Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337926

RESUMO

The reservoir coastal zone is the transitional zone between the terrestrial ecosystem and the aquatic ecosystem. Soil is an essential part of the terrestrial ecosystem and vital for life on Earth. To understand the composition and diversity of the soil eukaryotic microbial community under the background of artificial planting of Chrysopogon zizanioides in various habitats after reservoir construction, including the original habitat (OH), the hydro-fluctuation belt (HB), and the road slope (RS), and to analyze the interaction between the main groups of eukaryotic microorganisms, this study conducted 18S rDNA amplification high-throughput sequencing of the soil eukaryotic microbial community. The study found that the dominant phylum of eukaryotic microorganisms in the three habitats was consistent, but there were significant differences in the community and diversity of eukaryotic microorganisms in the three habitats. The differences in fungal communities between sample sites were greater than those of soil microfauna. Correlation analysis showed that nitrogen, phosphorus, and organic matter were significantly correlated with eukaryotic microbial diversity, with alkaline-hydrolyzed nitrogen and total phosphorus significantly correlated with fungal communities and pH and water content correlated with soil microfauna. Co-occurrence network analysis found that the interactions between fungi and the correlation between fungi and soil microfauna dominated the eukaryotic microbial community, and the interactions between eukaryotic microbes in different habitats were dominated by positive correlations. After the construction of the reservoir, the newly formed hydro-fluctuation belt reduced the types of interrelationships between fungi and microfauna compared to the original habitat. The road slope provided protection of the supporting project for the reservoir construction, although there was also planted vegetation. Eukaryotic microbes declined significantly due to the damage to and loss of the organic layer, and the decline in microfauna was the most significant, resulting in a simple structure of the soil food web, which affects the function and stability of the soil ecosystem.

2.
Plants (Basel) ; 12(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38140467

RESUMO

Leaf senescence is an important developmental process for deciduous trees during which part of leaf nitrogen is remobilized to branches, thus being beneficial for nitrogen conservation. However, the associated regulatory mechanism remains largely unknown in deciduous trees. In this study, nitrogen dynamics and transcriptomic activity in senescing leaves were measured during autumnal senescence in hybrid poplar. Both concentrations of leaf total nitrogen (N) and amine compounds were found to decline from the pre-senescence (PRE) to the middle-senescence (MS) stage. Although the total N concentration decreased further from MS to the late-senescence (LS) and leveled off to abscission (ABS) stage, amine compound concentration increased continuously from MS to ABS, suggesting that translocation of amine compounds underperformed production of amine compounds in leaves during this period. L-glutamate, L-glutamine and α-aminoadipic acid were the top three amine compounds accumulated in senescent leaves. RNA-Seq profiling identified thousands of differentially expressed genes (DEGs) with functional association with a metabolic transition towards disassimilation. Many genes encoding amino acid metabolism enzymes and amino acid transporters (AATs) were up-regulated. Comparison of expression trend with leaf N dynamics and phylogenetic analysis identified several PtAATs which exhibited down-regulation from MS to LS stage and putatively limited leaf N remobilization. This study can serve as a primary basis to further elucidate the molecular mechanisms of nitrogen remobilization in poplar senescing leaves.

3.
Planta ; 258(3): 48, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477756

RESUMO

MAIN CONCLUSION: Senescence influences leaf productivity through two aspects: photosynthesis and nutrient remobilization. Through distinctively manipulating progress of leaf senescence, it is promising to improve crop yield and quality simultaneously. Crop yield and quality are two chief goals pursued in agricultural and horticultural production. The basis of crop yield is leaf photosynthesis. Senescence is the last stage of leaf development, which usually causes decreasing of leaf photosynthetic activity. Delaying leaf senescence through physiological or molecular strategies may result in higher photosynthetic activity with a longer duration, thus producing more photoassimilates for biomass accumulation. On the other side, leaf senescence always induces degradation of macromolecular nutrients (including chlorophylls and proteins), and nutritional elements in leaves are then resorbed for development of other organs. For those crops with non-leaf organs as harvested biomass, translocating nutritional elements from leaves to harvested biomass is an indispensable physiological process to increase crop yield and quality. This review summarized successful studies about effects of delaying or promoting senescence on crop yield or quality improvement. Considering the distinctiveness of various crops, manipulation of leaf senescence should be specialized during agricultural and horticultural practices. Rational regulation of leaf senescence, such as inhibiting senescence to maintain leaf photosynthesis and then promoting senescence (with appropriate onset and efficiency) to remobilize more nutrients from leaves to target organs, may ultimately improve both crop yield and quality.


Assuntos
Fotossíntese , Senescência Vegetal , Fotossíntese/fisiologia , Produtos Agrícolas , Clorofila/metabolismo , Folhas de Planta/metabolismo
4.
Environ Res ; 214(Pt 1): 113847, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820653

RESUMO

Microplastics (wasted plastic particles < 5 mm in diameter) are ubiquitously distributed in the marine environment. Filter-feeding and low trophic level bivalves are vulnerable to microplastics accumulation from the surrounding depositional environment, thereby threatening both ecological health and human food safety. Microplastics had been detected in lots of coastal Bivalvia species. However, the influence of biological morphology on the mechanism of microplastics accumulation is not clear. There is also a knowledge gap of which species are preferred for commercial consumption, which creates loopholes in risk identification for food safety. A survey on a commercial popular eaten but under-researched hard clam (Meretrix meretrix; Linnaeus, 1758) from a famous fishery port city in southern China was carried out to comprehensively analyze shell size influence on microplastics accumulation in bivalves and consequently, human intake risk via bivalve consumption. Detected microplastics count in per individual (MCI) was 24.64 ± 19.11 items · individual-1, and microplastics count per gram (MCG; wet weight with shell) was 0.66 ± 0.54 items · g-1. When the shell width grew by 1 mm, MCI increased by 1.01 times, but MCG decreased by 0.97 times. Dominant microplastics characteristics found in this study was fiber and fragment. Sizes ranged from 25 to 150 µm, and dark colors (black, red, and blue) were found. The mostly common polymers were polyethene (PE, 40%), polyethylene terephthalate (PET, 23%), and polypropylene (PP, 18%). Estimated annual intake (EAI) risk of microplastics via hard clam consumption by residents was 6652.26 ± 5327.28 items · year -1 · person -1. The microplastics in bivalves and EAI was relatively high. When shell width grew by 1 mm, EAI decreased by 0.97 times. Therefore, eating a fixed amount of larger hard clams with a relatively low amount of microplastics can reduce EAI risk for consumers. A systematic investigation of emission sources along main coast, where bivalve production is prominent will be useful for food safety control in this region.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos
5.
Planta ; 255(6): 110, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471712

RESUMO

MAIN CONCLUSION: Upregulated expression of RESPIRATORY BURST OXIDASE HOMOLOG D (RBOHD) encoding a plasma membrane NADPH oxidase is responsible for the lesion-mimic phenotype in detached Arabidopsis leaves with mutation of PHEIDE a OXYGENASE during extended darkness. Chlorophyll degradation is an indispensable process in leaf senescence, either age-dependent or dark-induced. Besides higher chlorophyll retention, a lesion-mimic phenotype (abbreviated as LMP afterwards) was exhibited in Arabidopsis leaves with mutation of PHEIDE a OXYGENASE (PaO) involved in chlorophyll degradation during dark incubation, but the associated mechanism remains elusive. We found that dark-treated pao leaves showed higher membrane damage and H2O2 accumulation, while scavenging H2O2 by its chemical scavenger diminished LMP. RBOHD which encodes NADPH oxidase was strikingly up-regulated in pao leaves during dark treatment. Chemical inhibition of NADPH oxidase or mutation of RBOHD in pao leaves suppressed LMP. Thus, our study suggests that up-regulated RBOHD transcription is responsible for the formation of LMP in dark-treated pao leaves and there may be a retrograde signaling pathway mediating upregulation of RBOHD which remains to be elucidated.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxigenases , Fenótipo , Folhas de Planta/metabolismo
6.
Plants (Basel) ; 11(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35336641

RESUMO

Anthocyanin biosynthesis and accumulation is closely associated with tissue/organ coloring in plants. To gain insight into the physiological and molecular mechanisms of leaf coloring in Acer palmatum, a deciduous tree during autumnal senescence, we first investigated concentration dynamics of pigments (i.e., chlorophyll, carotenoid and anthocyanin) in leaves with differential coloring. It was found that compared to green leaves (GN), anthocyanins were accumulated actively in semi-red (SR) and total-red (TR) leaves, accompanied with chlorophyll and carotenoid degradation. Then transcriptional profiling on GN and SR leaves identified thousands of transcripts with differential expression in SR compared to GN leaves. An annotation search showed that the entire flavonoid/anthocyanin biosynthesis pathway from the production of naringenin chalcone to modification of flavonoid backbone was extensively activated at the transcriptional level in SR leaves. Phylogenetic analysis of putative MYB proteins identified ApMYB1 as a putative regulator promoting anthocyanin biosynthesis. Expression of ApMYB1 in leaves was induced by exogenous hormones including abscisic acid. Stable overexpression of ApMYB1 in tobacco resulted in leaves with higher accumulation of anthocyanins. Collectively, our results identified ApMYB1 as a positive regulator associated with leaf coloring in Acer palmatum during autumnal senescence, which may be regarded a potential target for breeding color-leafed plants.

7.
J Exp Bot ; 69(4): 855-865, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29444307

RESUMO

Organ senescence is an important developmental process in plants that enables recycling of nutrients, such as nitrogen, to maximize reproductive success. Nitrogen is the mineral nutrient required in greatest amount by plants, although soil-N limits plant productivity in many natural and agricultural systems, especially systems that receive little or no fertilizer-N. Use of industrial N-fertilizers in agriculture increased crop yields several fold over the past century, although at substantial cost to fossil energy reserves and the environment. Therefore, it is important to optimize nitrogen use efficiency (NUE) in agricultural systems. Organ senescence contributes to NUE in plants and manipulation of senescence in plant breeding programs is a promising approach to improve NUE in agriculture. Much of what we know about plant senescence comes from research on annual plants, which provide most of the food for humans. Relatively little work has been done on senescence in perennial plants, especially perennial grasses, which provide much of the forage for grazing animals and promise to supply much of the biomass required by the future biofuel industry. Here, we review briefly what is known about senescence from studies of annual plants, before presenting current knowledge about senescence in perennial grasses and its relationship to yield, quality, and NUE. While higher yield is a common target, desired N-content diverges between forage and biofuel crops. We discuss how senescence programs might be altered to produce high-yielding, stress-tolerant perennial grasses with high-N (protein) for forage or low-N for biofuels in systems optimized for NUE.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Nitrogênio/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Envelhecimento , Biocombustíveis
8.
Biotechnol Biofuels ; 10: 309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29299059

RESUMO

BACKGROUND: The mission of the BioEnergy Science Center (BESC) was to enable efficient lignocellulosic-based biofuel production. One BESC goal was to decrease poplar and switchgrass biomass recalcitrance to biofuel conversion while not affecting plant growth. A transformation pipeline (TP), to express transgenes or transgene fragments (constructs) in these feedstocks with the goal of understanding and decreasing recalcitrance, was considered essential for this goal. Centralized data storage for access by BESC members and later the public also was essential. RESULTS: A BESC committee was established to codify procedures to evaluate and accept genes into the TP. A laboratory information management system (LIMS) was organized to catalog constructs, plant lines and results from their analyses. One hundred twenty-eight constructs were accepted into the TP for expression in switchgrass in the first 5 years of BESC. Here we provide information on 53 of these constructs and the BESC TP process. Eleven of the constructs could not be cloned into an expression vector for transformation. Of the remaining constructs, 22 modified expression of the gene target. Transgenic lines representing some constructs displayed decreased recalcitrance in the field and publications describing these results are tabulated here. Transcript levels of target genes and detailed wall analyses from transgenic lines expressing six additional tabulated constructs aimed toward modifying expression of genes associated with wall structure (xyloglucan and lignin components) are provided. Altered expression of xyloglucan endotransglucosylase/hydrolases did not modify lignin content in transgenic plants. Simultaneous silencing of two hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferases was necessary to decrease G and S lignin monomer and total lignin contents, but this reduced plant growth. CONCLUSIONS: A TP to produce plants with decreased recalcitrance and a LIMS for data compilation from these plants were created. While many genes accepted into the TP resulted in transgenic switchgrass without modified lignin or biomass content, a group of genes with potential to improve lignocellulosic biofuel yields was identified. Results from transgenic lines targeting xyloglucan and lignin structure provide examples of the types of information available on switchgrass lines produced within BESC. This report supplies useful information when developing coordinated, large-scale, multi-institutional reverse genetic pipelines to improve crop traits.

9.
New Phytol ; 211(1): 75-89, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26935010

RESUMO

Improving nitrogen (N) remobilization from aboveground to underground organs during yearly shoot senescence is an important goal for sustainable production of switchgrass (Panicum virgatum) as a biofuel crop. Little is known about the genetic control of senescence and N use efficiency in perennial grasses such as switchgrass, which limits our ability to improve the process. Switchgrass aboveground organs (leaves, stems and inflorescences) and underground organs (crowns and roots) were harvested every month over a 3-yr period. Transcriptome analysis was performed to identify genes differentially expressed in various organs during development. Total N content in aboveground organs increased from spring until the end of summer, then decreased concomitant with senescence, while N content in underground organs exhibited an increase roughly matching the decrease in shoot N during fall. Hundreds of senescence-associated genes were identified in leaves and stems. Functional grouping indicated that regulation of transcription and protein degradation play important roles in shoot senescence. Coexpression networks predict important roles for five switchgrass NAC (NAM, ATAF1,2, CUC2) transcription factors (TFs) and other TF family members in orchestrating metabolism of carbohydrates, N and lipids, protein modification/degradation, and transport processes during senescence. This study establishes a molecular basis for understanding and enhancing N remobilization and conservation in switchgrass.


Assuntos
Nitrogênio/metabolismo , Panicum/genética , Panicum/metabolismo , Proteínas de Plantas/genética , Biomassa , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Panicum/crescimento & desenvolvimento , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Estações do Ano , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Plant Cell ; 26(12): 4862-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25516602

RESUMO

Chlorophyll degradation is an important part of leaf senescence, but the underlying regulatory mechanisms are largely unknown. Excised leaves of an Arabidopsis thaliana NAC-LIKE, ACTIVATED BY AP3/PI (NAP) transcription factor mutant (nap) exhibited lower transcript levels of known chlorophyll degradation genes, STAY-GREEN1 (SGR1), NON-YELLOW COLORING1 (NYC1), PHEOPHYTINASE (PPH), and PHEIDE a OXYGENASE (PaO), and higher chlorophyll retention than the wild type during dark-induced senescence. Transcriptome coexpression analysis revealed that abscisic acid (ABA) metabolism/signaling genes were disproportionately represented among those positively correlated with NAP expression. ABA levels were abnormally low in nap leaves during extended darkness. The ABA biosynthetic genes 9-CIS-EPOXYCAROTENOID DIOXYGENASE2, ABA DEFICIENT3, and ABSCISIC ALDEHYDE OXIDASE3 (AAO3) exhibited abnormally low transcript levels in dark-treated nap leaves. NAP transactivated the promoter of AAO3 in mesophyll cell protoplasts, and electrophoretic mobility shift assays showed that NAP can bind directly to a segment (-196 to -162 relative to the ATG start codon) of the AAO3 promoter. Exogenous application of ABA increased the transcript levels of SGR1, NYC1, PPH, and PaO and suppressed the stay-green phenotype of nap leaves during extended darkness. Overexpression of AAO3 in nap leaves also suppressed the stay-green phenotype under extended darkness. Collectively, the results show that NAP promotes chlorophyll degradation by enhancing transcription of AAO3, which leads to increased levels of the senescence-inducing hormone ABA.


Assuntos
Ácido Abscísico/biossíntese , Aldeído Oxidase/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Clorofila/metabolismo , Ácido Abscísico/farmacologia , Aldeído Oxidase/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescência Celular/genética , Escuridão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...